Unit Conversion

Using the Factor Label Method

Metric System Standard Measurement

Prefix	Part
mili-	$1 / 1000$
centi-	$1 / 100$
deci-	$1 / 10$
	1
deca-	$\times 10$
hecto-	$\times 100$
kilo-	$\times 1000$

Length (meters)	
1 mm	0.001 m
1 cm	0.01 m
1 dm	0.1 m
1 meter	1 m
1 dam	10 m
1 hm	100 m
1 km	1000 m

Mass (grams)		
1 mg	0.001 g	
1 cg	$0.01 \quad \mathrm{~g}$	
1 dg	$0.1 \quad \mathrm{~g}$	
1 gram	1 g	
1 dag	10 g	
1 hg	100 g	
1 kg	1000 g	

Volume (liters)		
1 mL	0.001 L	
1 cL	$0.01 \quad \mathrm{~L}$	
1 dL	$0.1 \quad \mathrm{~L}$	
1 liter	1 L	
1 daL	10 L	
1 hL	100 L	
1 kL	1000 L	

Imperial System Useful Equivalents

Length	
1 inch	2.54 cm
12 in.	1 foot
1 foot	0.3048 m
3 ft.	1 yard
1 yard	0.9144 m
$1,760 \mathrm{yd}$	1 mile
1 mile	1.6093 km

Mass	
1 ounce	28.35 g
16 oz.	1 pound
1 pound	0.4536 kg
14 lb.	1 stone
1 stone	6.3503 kg
1 ton	1.016 t
1 tonne	$1,000 \mathrm{~kg}$

Volume	
1 ounces	29.574 mL
8 fl. oz.	1 cup
1 cup	250 mL
2 cups	1 pint
1 pint	0.5 L
2 pints	1 gallon
1 gallon	3.7854 L

Sample

Problems \& Solutions

1. How many millimeters are in 1.25 meters?
a. First write down what you are supposed to convert.
b. Then write it multiplied by the conversion factor.
c. Cancel the original unit crossing it out top \& bottom.
d. Finish multiplying and write the answer with the appropriate unit.

$$
1.25 \text { meters } \times \frac{1000 \mathrm{~mm}}{\mathrm{~m}}=1250 \mathrm{~mm}
$$

Sample

Problems \& Solutions

2. How many inches are in two and a half feet?
a. First write down what you are supposed to convert.
b. Then write it multiplied by the conversion factor.
c. Cancel the original unit crossing it out top \& bottom.
d. Finish multiplying and write the answer with the appropriate unit.

Solve the Following Problems

1. How many kilometers are there in 731 meters?
a. First write down what you are supposed to convert.
b. Then write it multiplied by the conversion factor.
c. Cancel the original unit crossing it out top \& bottom.
d. Finish multiplying and write the answer with the appropriate unit.

$$
731 \text { meters } \times \frac{\text { kilometer }}{1000 \mathrm{~m}}=0.731 \mathrm{~km}
$$

Solve the Following Problems

2. How many millimeters are there in 273 centimeters?
a. First write down what you are supposed to convert.
b. Then write it multiplied by the conversion factor.
c. Cancel the original unit crossing it out top \& bottom.
d. Finish multiplying and write the answer with the appropriate unit.

$$
273 \mathrm{~cm} \times \frac{10 \mathrm{~mm}}{1 \mathrm{~cm}}=2730 \mathrm{~mm}
$$

Solve the Following Problems

3. How many meters are there in 75 feet?
a. First write down what you are supposed to convert.
b. Then write it multiplied by the conversion factor.
c. Cancel the original unit crossing it out top \& bottom.
d. Finish multiplying and write the answer with the appropriate unit.

$$
75 \text { feet } \times \frac{0.3048 \mathrm{~m}}{1 \mathrm{ft} .}=22.86 \mathrm{~m}
$$

Solve the Following Problems

4. How many milligrams are there in 2.53 grams?
a. First write down what you are supposed to convert.
b. Then write it multiplied by the conversion factor.
c. Cancel the original unit crossing it out top \& bottom.
d. Finish multiplying and write the answer with the appropriate unit.

$$
2.53 \text { grams } \times \frac{1000 \mathrm{mg}}{1 \mathrm{~g}}=2530 \mathrm{mg}
$$

Solve the Following Problems

5. How many kilograms are there in 2531 grams?
a. First write down what you are supposed to convert.
b. Then write it multiplied by the conversion factor.
c. Cancel the original unit crossing it out top \& bottom.
d. Finish multiplying and write the answer with the appropriate unit.

$$
2531 \text { grams } \times \frac{1 \text { kilogram }}{1000 \mathrm{~g}}=2.531 \mathrm{~kg}
$$

Solve the Following Problems

6. How many pounds are in 14 kilograms?
a. First write down what you are supposed to convert.
b. Then write it multiplied by the conversion factor.
c. Cancel the original unit crossing it out top \& bottom.
d. Finish multiplying and write the answer with the appropriate unit.

$$
14 \mathrm{~kg} \times \frac{1 \mathrm{lb} .}{0.4536 \mathrm{~kg}}=30.86 \mathrm{lb} .
$$

Solve the Following Problems

7. How many millimeters in two and a half liters?
a. First write down what you are supposed to convert.
b. Then write it multiplied by the conversion factor.
c. Cancel the original unit crossing it out top \& bottom.
d. Finish multiplying and write the answer with the appropriate unit.

$$
2.5 \searrow \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~V}}=2500 \mathrm{~mL}
$$

Solve the Following Problems

8. If you have 7 fluid ounces, how many mL is that?
a. First write down what you are supposed to convert.
b. Then write it multiplied by the conversion factor.
c. Cancel the original unit crossing it out top \& bottom.
d. Finish multiplying and write the answer with the appropriate unit.

$$
7 \text { fLOZ } \times \frac{29.574 \mathrm{~mL}}{1 \mathrm{fL} .0 \mathrm{Z}}=207.018 \mathrm{~mL}
$$

Solve the Following Problems

9. How many meters is 22 yards?
a. First write down what you are supposed to convert.
b. Then write it multiplied by the conversion factor.
c. Cancel the original unit crossing it out top \& bottom.
d. Finish multiplying and write the answer with the appropriate unit.

$$
22 \text { yd. } x \frac{0.9144 \mathrm{~m}}{1 \text { yd. }}=20.12 \mathrm{~m}
$$

Solve the Following Problems

10.How many kilometers in 2 miles?
a. First write down what you are supposed to convert.
b. Then write it multiplied by the conversion factor.
c. Cancel the original unit crossing it out top \& bottom.
d. Finish multiplying and write the answer with the appropriate unit.

$$
2 \text { mi. } \times \frac{1.6093 \mathrm{~km}}{1 \mathrm{mKi} .}=3.2186 \mathrm{~km}
$$

Solve the Following Problems

11. If you weigh 140 lb . then how many kilograms is that?
a. First write down what you are supposed to convert.
b. Then write it multiplied by the conversion factor.
c. Cancel the original unit crossing it out top \& bottom.
d. Finish multiplying and write the answer with the appropriate unit.

$$
140 \mathrm{lb} . \quad x \frac{0.4536 \mathrm{~kg}}{1 \mathrm{lb} .}=63.5 \mathrm{~kg}
$$

Solve the Following Problems

12.If there's half a milliliter in one drop of water, how many drops are in 17 mL ?
a. First write down what you are supposed to convert.
b. Then write it multiplied by the conversion factor.
c. Cancel the original unit crossing it out top \& bottom.
d. Finish multiplying and write the answer with the appropriate unit.
$17 \mathrm{mK} \times \frac{1 \text { drop water }}{0.5 \mathrm{mK}}=34$ drops water

Unit Conversion

Using the Factor Label Method

